
Foreign-Function Interfaces for Garbage-Collected Programming
Languages

Marcus Crestani
Eberhard-Karls-Universität Tübingen

crestani@informatik.uni-tuebingen.de

Abstract
Programs in high-level, garbage-collected programming languages
often need to access libraries that are written in other programming
languages. A foreign-function interface provides a high-level lan-
guage with access to low-level programming languages and negoti-
ates between the inside and the outside world by taking care of the
low-level details. In this paper, I provide an overview of what differ-
ent kinds of foreign-function interfaces are in use in today’s imple-
mentations of functional programming languages to help decide on
the design of a new foreign-function interface for Scheme 48. I have
revised several mechanisms and design ideas and compared them
on usability, portability, memory consumption and thread safety. I
discuss the garbage-collection related parts of foreign-function in-
terfaces using Scheme as the high-level functional language and C
as the external language.

1. Introduction
Programs in functional programming languages often need to ac-
cess libraries that are written in other programming languages.
Back in 1996, Scheme 48 [10] received its first foreign-function
interface. Over the years, developers connected many external li-
braries to Scheme 48 using this foreign-function interface. Many
other Scheme implementations use a similar foreign-function in-
terface, for example Elk [12], scsh [18], and PLT Scheme’s static
foreign interface [6]. The foreign-function interface worked rea-
sonably well for a wide variety of external libraries, ranging from
database bindings for SQL and ODBC to graphical toolkits like
Xlib and Qt, for example.

In 2003, Kelsey and Sperber proposed SRFI 50 [11] to the
Scheme community. The proposal describes a foreign-function in-
terface based on the design of Scheme 48’s foreign-function inter-
face. After a great deal of discussion that uncovered some weak-
nesses of the approach, the authors withdrew their proposal [16].

Since then the Scheme 48 developers have tried to connect
more external libraries to Scheme 48 and they have realized that
the more complex the library the more difficult it was to use the
foreign-function interface correctly. In particular, problems with
memory management became harder to solve. I then started to look
at foreign-function interfaces of other functional programming lan-
guages to see if they have come up with solutions to our problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2008 Workshop on Scheme and Functional Programming

Foreign
Function
Interface

High-Level
Programming

Language
External Code

Figure 1. Foreign-function interface

This paper reflects my survey, summarizes the results, and presents
Scheme 48’s new foreign-function interface, which will replace the
current one in the near future.

1.1 Foreign-Function Interfaces
A foreign-function interface provides a high-level programming
language with access to other (usually low-level) programming lan-
guages and negotiates between the inside and the outside world.
Figure 1 illustrates a foreign-function interface that connects the
high-level programming language with the external programming
language. A foreign-function interface takes care of all the low-
level details that programmers do not need to know when connect-
ing the two worlds:

• converting between different calling conventions such that both
worlds can call each other’s functions

• marshalling and unmarshalling data and objects between the
two worlds

• managing memory and other resources

Most high-level programming language implementations come
with a foreign-function interface, usually for C. Naturally, there
are many approaches to designing foreign-function interfaces. My
goal is to provide an overview of what different kinds of foreign-
function interfaces are in use in today’s implementations to help
decide on the design of a foreign-function interface for Scheme 48.
In this paper, I revise several mechanisms and design ideas and
compare them on usability, portability, memory consumption and
thread safety.

I do not cover tools that automate the generation of glue code
for foreign interfaces in this paper. I rather describe the interface
on a lower level and show how things are processed there. Once

1



the low-level details are in place, stub generators can be written to
produce code that works with the foreign-function interface.

1.2 Basics
Urban’s foreign-function interface survey [23] provides a good
overview of many existing foreign-function interfaces, along with
discussion of such systems and a list of relevant issues. His survey
is large but still far from completion. Therefore, my survey is lim-
ited to a few foreign-function interfaces that are in use in functional
programming and that seem to be widespread or promising.

Here are the most important issues that foreign-function inter-
faces have to deal with and that recur in my descriptions of the
foreign-function interfaces that this paper covers.

Calling conventions Calling conventions describe the method of
calling a function and passing parameters to it, and how to expect
the result back from the call. Generally, differences occur on how
the caller has to pass the parameters—on the stack, in registers,
on the heap, or a mixture—and where the callee puts the result.
Another issue are the naming conventions: The high-level and the
external language have to negotiate on the naming scheme for each
other’s functions and variables and how the names are imported
into each other’s namespaces.

It is desirable to have a foreign-function interface that allows
calls in both directions: Calls from the high-level language to the
external functions are called call-outs. Calls from the external code
to high-level functions are called call-backs. A common example
for call-backs are high-level functions that are used as event han-
dlers for an external GUI library.

There are some complications that arise when mixing call-backs
with continuations, especially if a function that is called back from
the foreign function captures a continuation that also contains parts
of the external function. What should happen if the continuation is
invoked after the external function returns and its stack frame is no
longer available? Some foreign-function interfaces restrict or for-
bid the use of continuations in call-backs; Scheme 48, for example,
only allows downward continuations [10]. Since this paper concen-
trates on garbage-collection-related issues with foreign-function in-
terfaces, a more detailed answer is outside the scope of the paper.

Another issue is the propagation of errors from the external to
the internal world and vice versa. High-level languages use excep-
tion mechanisms to propagate errors to the caller or user. External
code should be able to use this mechanism as well: It should be able
to pass exceptions to the high-level language. The only way to pass
exceptions from the high-level language to external code that does
not have an exception mechanism is to use parameters and return
values.

Marshalling Generally, marshalling means transformation of the
memory representation of an object into another data format. Usu-
ally, foreign-function interfaces allow the programmer to convert
between the data representations of the involved languages. Mar-
shalling may include byte-order changes, boxing and unboxing, or
coding-system adjustments, for example. Depending on the inter-
face, the functionality can be available in the high-level language,
or in the external code, or both.

Memory management Most high-level languages have a uniform
representation for their values, called descriptors. Descriptors are
objects of high-level languages that are either simple values that
fit into a word (i.e. integers) or that are too big to fit into a word
and are allocated on the garbage-collected heap. In the latter case,
the descriptor represents a pointer into the heap. External code has
to coordinate with the garbage collector of the high-level program-
ming language to make sure that all descriptors to which the ex-
ternal code has access are kept live by the garbage collector. If the
system uses a moving garbage collector, it has to be able to update

the external code’s descriptors if it has moved the heap-allocated
objects. Therefore, the garbage collector has to know all the loca-
tions of descriptors in external code.

Some foreign languages or libraries provide their own au-
tomatic memory management: For example, Java or C# come
with a garbage collector; the GTK+ graphical toolkit [22] uses
a reference-count method to keep track of the objects in use. To
correctly interface with an external memory manager, the high-
level language must be able to finalize its objects: Finalization
applies actions to an object when the object is no longer in use
by a program. Such an action is called finalizer. The finalizer runs
after the garbage collector found out that the object is garbage.
The foreign-function interface uses the finalizers to communicate
to the external memory manager that the object is no longer in use.
Although the memory of the external language or library is auto-
matically managed, the foreign-function interface pretends that it is
not and manages the memory explicitly. For clarity, I do not explic-
itly refer to garbage-collected external language in the remainder
of this paper.

Thread safety For implementations of high-level programming
languages that support multiple system-level threads, it is important
that the foreign-function interface guarantees that the system is in
a consistent state if a thread switch occurs while external code
runs, or that consistency is guaranteed on systems that have truly
concurrent threads. Specifically the heap has to be in a consistent
state, i.e. that descriptors are not corrupted by thread interactions
if another thread triggers a garbage collection. A foreign-function
interface should make it as easy and transparent as possible to avoid
such situations.

1.3 Classification
The main challenge for a foreign-function interface in the context
of high-level programming languages is the interaction with the
garbage collector. The interface has to provide a setup so that
the external data can live in harmony with the garbage collector
of the high-level language. For a programmer, this is the most
noticeable difference between the several approaches. Therefore,
the existing foreign-function interfaces I investigate in this paper
are all classified according to their integration with the garbage
collector as their key property. In fact, other aspects like calling
conventions and marshalling often fall into place easily, once the
interaction with the garbage collector is defined. As a consequence,
the main focus of this paper is to describe the garbage-collection
related parts of the covered foreign-function interfaces.

Below, I mostly use Scheme as the high-level functional lan-
guage and C as the external language.

1.4 Outline
Section 2 explains how conservative garbage collectors interact
with foreign-function interfaces. Section 3 describes the widely-
used GCPROTECT foreign-function interface. Section 4 gives
an overview about foreign-function interfaces that use the stable-
pointer approach. Section 5 explains in detail the reference-object
approach, a JNI-style foreign-function interface. Section 6 briefly
describes Scheme 48’s new foreign-function interface. Section 7
lists related work and section 8 concludes.

2. Conservative garbage collection
Old versions of PLT Scheme1 come with a conservative garbage
collector [6]. Newer versions still give the user the choice to run
PLT Scheme with its conservative garbage collector. Bigloo [17]
and Guile [20] are Scheme implementations that use conservative

1 up to PLT Scheme version 360

2



garbage collectors, as well. Conservative garbage collectors pro-
vide automatic memory management without any cooperation from
the compiler or the run-time environment of a high-level language.
In contrast to precise garbage collectors that can correctly identify
all descriptors with the help of the system, conservative collectors
cannot exactly differentiate between descriptor and non-descriptor
values. Therefore, a conservative collector has to play it safe: It has
to treat all memory contents that look like descriptors as descrip-
tors and keep the referenced memory live. The collector searches
all data structures that the program uses: It builds the root set by
searching for all potential descriptors in the registers and in the
stack frames. Then, it follows all possible descriptors that repre-
sent heap values from the root set transitively to other objects in the
allocated memory and scans the objects for more potential descrip-
tors. It does not reclaim memory that a potential descriptor refers
to, thus accidental fake descriptors may cause memory overhead by
keeping too much memory live [9].

Since conservative garbage collectors do not need the support
of a compiler, they even work with low-level languages like C or
any other low-level language that might be used as an external
foreign language. Boehm’s conservative garbage collector for C
and C++ [5], for example, equips programs that are written in
either C or C++ with a conservative collector. PLT Scheme uses
the Boehm collector.

A foreign-function interface for a high-level programming lan-
guage can benefit from conservative garbage collection, so does the
conservatively-collected foreign-function interface of PLT Scheme:
Instead of actively registering descriptors, it has to do nothing and
just let the conservative collector take care of finding all descrip-
tors itself. As figure 2 shows, the high-level language (Scheme, for
example) shares the objects with the external language.

variable in
external code

variable in
Scheme code

Scheme 
object

garbage collected heap

Figure 2. Scheme object under conservative garbage collection

As an example of external code in a system with conservative
garbage collection, consider the following implementation of cons
written in C for some Scheme implementation:

scheme_descriptor
cons (scheme_descriptor v1, scheme_descriptor v2)
{
scheme_descriptor pair;
pair = allocate (SCHEME_TYPE_PAIR, 2);
SET_CAR (pair, v1);
SET_CDR (pair, v2);
return pair;

}

The code is straightforward and gets along without explicit regis-
tration of the descriptors with garbage collector: It allocates enough
space for the pair and sets the pair’s components to the arguments.
At any time, the garbage collector can find all Scheme descriptors:
The parameters v1 and v2 are on the stack, as well as the local
variable pair.

2.1 Memory overhead
Due to the conservative nature of the garbage-collection algorithm,
some random blocks in memory might be kept live longer than nec-
essary due to misidentified descriptors. This may lead to memory

leaks. This is a costly price to pay for not having to deal with ex-
plicit coordination with the garbage collector.

Additionally, conservative garbage collection comes with other
drawbacks: Generally, every kind of automatic memory manage-
ment poses a run-time cost on the system. Simple collection al-
gorithms pause the execution of the program so that they can per-
form their collection. Modern collection algorithms primarily try to
shorten pause times to make programs more reactive, for example
by only covering a part of all used memory in one collection. These
collection algorithms are categorized as incremental collectors. It
is possible, though difficult, to write an incremental conservative
collector [9].

Another drawback is even more severe: Since conservative col-
lectors cannot be certain that any value that is visible to the exter-
nal code is a descriptor, they cannot risk modifying program data
and therefore they are constrained to use a non-moving collector
for data that is directly accessible from external code. However,
Bartlett’s mostly-copying conservative collector [1] can move data
that only has direct pointers from other heap objects, though. But
still, it is difficult to manage free memory, because the memory of
a running program becomes fragmented: Reclamation of objects
leads to holes within the allocated memory, called fragmentation.
The accumulation of small regions of free storage that are too small
to be useful for allocation, even though the sum of free space may
be more than sufficient.

2.2 Thread safety
Conservative garbage collection is thread-safe. Collections can oc-
cur at any time without special synchronization of threads.

2.3 Usability
A foreign-function interface that is backed by a conservative
garbage collector is very easy to use: The programmer does not
need to explicitly register objects that are subject to collection with
the garbage collector. The conservative collector keeps all accessi-
ble objects—and some more—live.

2.4 Portability
The identification of registers, the stack, and other areas that might
contain descriptors is highly machine-specific. To get a implemen-
tation to work on a variety of machines, the implementation has
to provide enough system-specific code so that the conservative
garbage collector works on every platform.

3. GCPROTECT
Several implementations of functional programming languages use
the GCPROTECT mechanism in external code to interface with
the garbage collector. For example, variants of this mechanism can
be found in the LISP implementation XEmacs [24], the ML di-
alect Objective Caml [13], and the Scheme implementations Elk
[12], Scheme 48 [10], scsh [18], as well as in PLT Scheme’s static
foreign interface [6]. It is also the mechanism that the authors of
the withdrawn SRFI 50 [11] proposed. With this mechanism, the
foreign-function interface moves the full liability of communicat-
ing to the garbage collector what objects are in use completely to
the external code.

The basic idea is that the external code registers all objects
that it has in use with the garbage collector. More precisely, all
variables of the external code that are bound to Scheme descriptors
need to be registered with the garbage collector so that the garbage
collector knows the location of all externally held descriptors. The
collector will keep the Scheme descriptors in these locations live
and update their descriptors if needed. Implementations usually
call this registration process protecting. Figure 3 shows a protected
variable that holds a descriptor in external code.

3



Scheme 
object

variable in
external code

variable in
Scheme code

location of variable
registered with the
garbage collector

garbage collected heap

Figure 3. A protected variable

The exact syntax for protection varies from implementation to
implementation, but most of the implementations mentioned above
use three C macros that go in general like this:

DECLARE_GCPROTECT initializes the registry for this function or
block. It must be placed in the declarations at the beginning of
the enclosing function or block. Usually, it accepts an integer
argument that denotes the number of local variables to prepare
the registry for.

GCPROTECT registers a variable with the garbage collector. The
usage of this macro must be within the same scope as DECLARE_
GCPROTECT and must be before any code that can cause a
garbage collection. The variable must contain a descriptor at all
times, i.e. the programmer must initialize the variable (usually
with the descriptor for the Scheme value #f).

GCUNPROTECT removes the block’s protected variables and unreg-
isters them from the garbage collector. It must be called at the
end of the block after any code that may cause a garbage col-
lection.

The programmer adds the above macros to the beginning and end
of every C function that accepts or returns Scheme descriptors and
lists all variables that may hold a Scheme descriptor, including the
function’s parameters. All the marshalling happens on the C side as
the implementations export functionality to the C code that allows
to access and modify all Scheme descriptors.

The following code snippet shows how cons could be imple-
mented as an C function with the GCPROTECT mechanism:

scheme_descriptor
cons (scheme_descriptor v1, scheme_descriptor v2)
{
scheme_descriptor pair;
DECLARE_GCPROTECT (2);
GCPROTECT (v1);
GCPROTECT (v2);

pair = allocate (SCHEME_TYPE_PAIR, 2);
SET_CAR (pair, v1);
SET_CDR (pair, v2);

GCUNPROTECT ();
return pair;

}

Here, the callee protects its call parameters v1 and v2.2 The pro-
grammer needs to protect both variables since the call to allocate
may trigger a garbage collection and both variables are live across
this call. The above code works correctly under the assumption

2 Other implementations put the caller in charge of protecting the arguments
it uses in a subsequent call (this only works if the collector does not move
objects).

that SET_CAR and SET_CDR cannot trigger garbage collections. If
they could, then the programmer would have to protect the variable
pair as well.

The above macros work for local variables. Additionally, the
foreign-function interface provides primitives to protect and un-
protect Scheme objects that outlive a function call, for example
because the programmer keeps them as global variables or stores
them in external objects whose lifetime is not bound to the current
call. There again, the programmer is fully responsible for explicitly
protecting and unprotecting the Scheme descriptors.

3.1 Memory overhead
The memory cost of this mechanism is low since an array of pro-
tected variables that is shared between the collector and the exter-
nal code is sufficient for bookkeeping. Variables that the external
code does not use do not need to be protected and are thus not kept
live by the garbage collector. If the programmer gets it right, the
GCPROTECT mechanism does not keep unneeded Scheme objects
live.

Globally protected objects are live until the programmer unpro-
tects them explicitly. It is completely up to the programmer to pro-
tect the object as long the external code reaches it and to unprotect
it as soon as it is no longer in use, like in any language that does
not come with an garbage collector. Little overhead is caused by
the data structure that keeps track of globally protected external
locations.

3.2 Thread safety
Thread safety is difficult to achieve with a GCPROTECT interface:
A thread can be interrupted at the moment the external code was
going to write a descriptor to a protected location. If a garbage
collection occurs before the thread resumes and the descriptor
gets written, the garbage collector cannot see this descriptor. The
collector may free the object the descriptor points to, or may move
it to another address in memory without updating the descriptor.
Once the thread resumes, the now broken descriptor gets written
to the protected location. This leads to a dangling descriptor in the
external code.

Therefore, external code has to either forbid garbage collection
in critical sections or set safe points if the code is in a state where it
is safe to have a garbage collection. A garbage collection then only
runs, when all threads allow garbage collection. All the external
code has to be annotated accordingly, which is both a difficult and
error-prone task.

3.3 Usability
The mechanism is difficult and error-prone to use, with severe con-
sequences if not used correctly: The programmer has to know un-
der what circumstances the garbage collector may or may not run.
If the program forgets to protect a variable, the garbage collector
may relocate or free a Scheme object and invalidate the descriptor
that the external code uses. If the programmer forgets to unprotect
a variable, the garbage collector will treat it as live for the remain-
der of the program run which may cause a memory leak. However,
the foreign-function interface can be equipped to detect missing
GCUNPROTECTs and do the unprotection for the programmer: For
example, the foreign-function interface can record which variables
the programmer has protected, which variables the programmer has
unprotected and thus derive which variables the programmer forgot
to unprotect.

The programming languages’ documentations often list a num-
ber of rules that the programmer should stick to. The Objective
Caml documentation provides four rules [13], the XEmacs Inter-
nals Manual [24] lists 13 rules. This is obviously not a user-friendly
mechanism. Moreover, these rules are often tightly coupled to the

4



implementation of the system’s garbage collector as they try to
list situations when a garbage collection might happen and sug-
gest special treatment in these situations. This imposes a burden on
the implementor of the garbage collector and makes changes to the
garbage-collection algorithm difficult.

3.4 Portability
The fact that many systems use the GCPROTECT scheme shows
that it is a portable approach. It poses some requirements on the
language implementation, though:

• Marshalling has to happen on the external side.
• Situations that can trigger a garbage collection have to be well-

defined and must not change when the garbage collector algo-
rithm changes.

4. Stable pointers
Stable pointers are an instrument to avoid the need to register
descriptors with the garbage collector. Instead of keeping track
of garbage-collected objects, this approach only passes references
that are not subject to garbage collection to the external code.
Variants of this idea can be found in PLT Scheme’s dynamic foreign
interface [2], the Glasgow Haskell Compiler [21], and the LISP
implementations GNU CLISP [8] and Allegro CL [7].

In practice, this can be achieved in two ways:

• External code only works on copies of the data
• High-level code allocates memory manually

I describe both in the following.

External code only works on copies of the data: The basic idea
of this variant is that external code must not access objects
through descriptors on the heap of the high-level language, but
rather works on copies or specially allocated versions of the
objects. Figure 4 outlines the setup in Scheme. The programmer
is in charge of preparing these copies prior to every external
call and cleaning up afterwards. The programmer has to copy
the objects to explicitly allocated memory that is not under
the control of the garbage collector, so that this memory area
and the pointers to it are stable. Then, external code works on
the copy of the objects and does not have to worry about the
garbage collector freeing or moving the data. After the external
call returns, it is again the duty of the programmer to copy the
objects or selectively write parts back to the garbage-collected
heap of the high-level language that the external code modified
and copy the return value of the external code as well.

Scheme 
object

variable in
external code

variable in
Scheme code

manually managed
by Scheme code

external
object copy

garbage collected heapmanually managed heap

Figure 4. Stable pointers as copies

High-level code allocates memory manually: The high-level lan-
guage provides an operation that allocates memory that is not
under observation by the garbage collector for descriptors that
may be used in external code, see figure 5. Since this mem-
ory is not automatically managed, it is the responsibility of
the programmer to free it after it is no longer used by neither

the internal nor the external code. Basically, a foreign-function
interface like this lifts the error-prone explicit memory manage-
ment from lower-level languages into the high-level language.
Additional care has to be taken if explicitly allocated storage
contains descriptors of automatically managed storage: The
garbage collector has to know about the locations of these de-
scriptors to keep them live and up-to-date. Implementations
forbid descriptors in manually managed memory or they ex-
pect the programmer to provide the needed information to the
garbage collector, i.e. with a map of contained descriptor off-
sets [2].

variable in
external code

manually managed
variable in

high-level code

external
object

garbage collected heapmanually managed heap

Figure 5. Stable pointers as manually managed memory

Both above-mentioned variants are similar: They put the burden
of the manual memory management on the programmer of the
high-level code. The only difference is the memory overhead, if
two copies of essentially the same data is kept around or if there
is only one (explicitly allocated) version. Therefore, I restrict the
discussion in the remainder of this section to the copying variant.

Implementations that use this variant do not just copy the de-
scriptors to the external values prior to external calls. In addition,
they use this step to marshall from descriptors to the external val-
ues, as well. Since this all happens on the high-level side, the high-
level language has to know about all the data types of the external
code. For C as the external language, the high-level language has
to provide a notion for pointers, structs, and all the other C types.

To illustrate this, the following CLISP code [8] shows the usage
of ANSI C’s div function. First, on ANSI C systems, <stdlib.h>
contains the following declarations:

typedef struct {
int quot; /* Quotient */
int rem; /* Remainder */

} div_t;
extern div_t div (int numer, int denom);

To use the external function div in CLISP, the programmer lets the
LISP system know about the resulting struct type:

(def-c-struct (div_t :typedef)
(quot int)
(rem int))

And then enters the external function as a LISP function:

(def-call-out div
(:arguments (numer int) (denom int))
(:return-type div_t))

To evaluate the call (div 20 3), the foreign-function interface
translates the arguments into their C representation, in this example
it copies every argument from a LISP number to a C int. The
C side allocates the struct for the function’s return value, sets the
struct’s components, and returns this struct to LISP. LISP sees the
same struct as a c-struct:

#S(DIV_T :QUOT 6 :REM 2)

5



CLISP provides accessors to the c-structs to do unmarshalling
into LISP descriptors, i.e. to translate C ints to LISP numbers.

4.1 Memory overhead
The memory overhead of this mechanism is significant: Data used
in the external code has to be copied to memory regions that
the garbage collector does not touch. Thus, this data resides at
two locations in memory: On the heap of the high-level side and
explicitly malloc’d for the external code. This leads to up to twice
the memory consumption for shared objects. Once the external
code runs, there is no way to free up no longer needed memory. The
explicit memory cleanup cannot happen until the call has returned
to the high-level side.

To avoid the memory doubling, Franz’s LISP implementa-
tion [7] offers an alternative for copying the LISP descriptors to
a special memory location: It gives the programmer the ability to
register the LISP descriptors that are subject to garbage collection
in a table. The table lives on the LISP side and contains the cur-
rent valid memory location of each registered descriptor. External
code can look up a table entry to get the currently valid memory
location. Since this memory location is only valid until the next
garbage collection occurs, external code has to repeat the look up
every time it accesses the LISP descriptor. This is both inefficient
and error-prone.

Because of the copying, it is not desirable to use large and
complex data structures as arguments for foreign functions. Instead,
it is more efficient for a programmer to have as much code that
deals with walking the complex data structures on the high-level
side and then pass much simpler objects to the external functions.

4.2 Thread safety
Since external code does not directly work on objects that are
subject to garbage collection, this approach is thread-safe. External
code only works on copies or on objects that are not subject to
garbage collection. Thus, thread interactions cannot corrupt data.

4.3 Usability
The foremost advantage of this mechanism is the fact that it does
not put any restrictions on the external code. Since all conversions
and preparations happens on the inside, the external code does not
need to do any kind of bookkeeping. Barzilay [2] uses this mecha-
nism in PLT’s dynamic foreign interface to call external functions
that are dynamically loaded from compiled external libraries. Since
this approach does not require any external glue code or changes
to the external code nor recompilation of the libraries, it is truly
dynamic. And it makes it easy for a programmer to use external
functionality, especially if she prefers to stay in the Scheme world.

On the other hand, this mechanism requires the programmer
to manage memory explicitly in the high-level language, and re-
member to re-enter the results of the external call into the garbage-
collected heap. Both are error-prone. In addition, the programmer
has to replicate all the external compound values in Scheme that are
needed to interact with the external code. The implementations pro-
vide various forms of wrappers, helper functions, and macros that
aim at making the common cases easy to use and hide the details
from the programmer.

Note that the stable-pointer approach only can call into an
existing library if it provides access to its functionality dynamically,
e.g. only through C functions. If the API of the external library
contains macros, the programmer has yet to write and compile
external code, because C macros are only part of the library’s static
interface. Often, a library’s API documentation does not distinguish
between the macro and truly dynamic parts of the interface, which
makes it hard for the user of the dynamic foreign interface.

4.4 Portability
It is not possible to dynamically load compiled libraries in a re-
ally portable manner. Object code is different on each platform and
naturally contains machine-dependent parts. Additionally, not all
compilers make it easy for such a dynamic interface to read the in-
formation it needs out of the binary: Due to compiler optimization,
for example, it might be different on every platform to calculate
the offsets needed to access fields in structs since addresses might
be moved off word-boundaries, or might be compressed and thus
garbled in any way.

PLT achieves some portability by using libffi, a library to
connect to gcc-compiled libraries, in a slightly adapted version so
that it works with gcc and Microsoft’s compiler [2].

5. Reference objects
Jim Blandy’s Scheme implementation Minor [3] uses a foreign-
function interface that is quite similar to Sun’s Java Native Interface
(JNI) [19]. With this mechanism, the foreign-function interface
takes care of communicating to the garbage collector what objects
it uses in most situations. It relieves the programmer from having
to think about garbage collector interactions in the common case.

The foreign-function interface does not give external code direct
access to Scheme objects. It introduces one level of indirection
as external code never accepts or returns descriptors to Scheme
objects. Instead, external code accepts or returns reference objects
that refer to Scheme objects, see figure 6.

Scheme object

reference object
variable in

external code

Figure 6. Reference objects

This indirection is only needed as an interface to external code,
interior pointers in Scheme objects are unaffected. The interface
provides functionality to the external code that allows to access
reference objects’ Scheme descriptors and does the marshalling.
All the marshalling happens on the external side.

Minor provides two kinds of reference objects:

local references A local reference is valid for the duration of a
function call from the high-level language to external code and
is automatically freed after the external function returns to the
virtual machine.

global references A global reference remains valid until external
code explicitly frees it.

Scheme objects that are passed to external functions are passed as
local references. External functions return Scheme objects as local
references. External code has to manually manage Scheme objects
that outlive a function call as global references. Scheme objects
outlive a function call if they are assigned to a global variable of the
external code or stored in long-living external objects. A common
example are Scheme functions that are used as call-backs for an
external GUI library.

A local reference is valid only within the dynamic context of the
native method that creates it. Therefore, a local reference behaves
exactly like a local variable in the external code: It is live as long as
external code can access it. To achieve this, every external function
in the interface that accepts or returns reference objects takes a call
object as its first argument. The call object holds all the references

6



that belong to a call (like the call’s arguments and return value)
to external code from Scheme. External code may pass a local
reference through multiple external functions. The foreign-function
interface automatically frees all the local references a call object
owns, along with the call object itself, when an external call returns
to Scheme.

This means that in the common case of Scheme calling an ex-
ternal function that does some work on its arguments and returns
without stashing any Scheme objects in global variables or global
data structures, the external code does not need to do any bookkeep-
ing, since all the reference objects the external code accumulates
are local references [4]. Once the call returns, the foreign-function
interface frees all the local references.

As an example, the following code shows how an external cons
could be implemented in C:

ref_t
cons (call_t call, ref_t v1, ref_t v2)
{
ref_t pair;
pair = allocate (call, SCHEME_TYPE_PAIR, 2);
set_car (call, pair, v1);
set_cdr (call, pair, v2);
return pair;

}

In addition to the car and the cdr, cons takes a call object. A func-
tion call from Scheme to the above function cons associates the
parameters v1 and v2 with the call object. The allocate function
associates the reference object that is bound to the variable pair
with the call argument as well. It does so by wrapping the Scheme
descriptor it allocates in a reference object. Thus, all Scheme de-
scriptors to which the external code has access are known to the
garbage collector, without any explicit form of registration. When-
ever a collection occurs, these objects will be kept live and their
descriptor remains up-to-date.

In the rare cases where external code needs a reference object
to survive the current call, the external code needs to do explicit
bookkeeping. Local references must not be stored in global vari-
ables of the external code or passed to other threads, since all local
references are freed once the call returns, which leads to a dangling
pointer in the global variable or other thread respectively. Instead, a
programmer can promote a local reference to a global reference that
she can safely store in a global variable or pass to another thread
as global references will survive the current call [14]. Since the
foreign-function interface never automatically frees global refer-
ences, the programmer must free them at the right time. Managing
global references means more work, but this is the kind of work that
a C programmer is used to anyway: Like any other kind of object
that the programmer allocates explicitly (or promotes to a global
reference, in the terms of the foreign-function interface), a global
reference needs to be freed explicitly as well. The same holds for
sharing a object between multiple threads: The programmer has to
ensure that one thread is not using a global reference while another
thread is freeing it [4].

5.1 Memory overhead
Each reference object consumes a certain amount of memory itself,
in addition to the memory taken by the referred Scheme object
itself. Even though local references are eventually freed on return
of an external call, there are some situations where it is desirable to
free local references explicitly, since waiting until the call returns
may be too long or never happen, which could keep unneeded
objects live:

• External code may create a large number of local references
in a single external call. An example is the traversal of a list:
Each call from external code to the functions that correspond
to car and cdr returns a fresh local reference. To avoid the
consumption of storage for local references proportional to the
length of the list, the traversal must free the no-longer-needed
references as it goes [4].

• The external call does not return at all. If the external function
enters an infinite event dispatch loop, for example, it is crucial
that the programmer releases local references manually that he
created inside the loop so that they do not accumulate indefi-
nitely and lead to a memory leak [14].

• External code may hold a local reference to a large Scheme
object. After the external code is done working on this object,
it performs some additional computation before returning to the
caller. The local reference to the large object prevents the object
from being garbage collected until the external function returns,
even if the object is no longer in use for the remainder of the
computation. It is more space-efficient if the programmer frees
the local reference when the external function does not need it
any longer and will not return for quite some time [14].

Additionally, Blandy describes common situations where local ref-
erences are created solely to be passed to another function, and
afterwards never used again [4]. For example, the programmer uses
this code snippet to produce a local reference to the pair (23 .
42):

ref_t twentythree = enter_integer (call, 23);
ref_t fortytwo = enter_integer (call, 42);
ref_t pair = cons (call, twentythree, fortytwo);
free_local_ref (call, twentythree);
free_local_ref (call, fortytwo);

In this example, the programmer frees the arguments of the call
to cons since both references are no longer needed. As this is a
common pattern, Minor’s C API offers variants for many functions
that free all the references they are passed to as arguments, in
addition to whatever else the functions do. The above example can
be written more efficiently like this:

ref_t pair = ad_cons (call,
int_to_number (call, 23),
int_to_number (call, 42));

The resulting code is more legible and elegant as well as more
memory efficient.

To summarize, memory overhead is low in the common case,
but there are some situations, that need special attention to keep
it low. The situations are well-defined and some of the situations
can be seen as opportunities to optimize, i.e. their recognition and
treatment is not crucial for the external code to work correctly.

5.2 Thread safety
Since reference objects are not mutable, this mechanism can easily
be implemented in a thread-safe manner: Only when a Scheme
object is initially wrapped into a reference object, a thread switch
or a truly concurrent thread that runs the garbage collector can
corrupt the external code’s descriptors. Thus, it is sufficient for
the foreign interface to treat the creation of reference objects as a
critical section where a GC must not move the underlying Scheme
object.

5.3 Usability
This foreign-function interface takes a significant burden off the
programmer as it handles most common cases automatically. If all

7



the Scheme objects are live for the extent of the current external
call, the programmer does not have to do anything at all. Since the
lifetime of the Scheme objects is then identical with the lifetime of
the according reference objects. In this case, the systems automati-
cally manages both for the programmer.

For Scheme objects that outlive the current call, things get more
involved, as the programmer has to manage their reference objects
manually. But the need to manage long-living objects manually is
familiar to C programmers.

The fact that the memory that external calls keep live is bound
to the extent of an external call entails the need for freeing local
references explicitly in certain situations described above. Explic-
itly freeing local references to keep the memory overhead low for
long-lasting external calls is still error-prone, however.

Using this foreign-function interface does not make the code
more complex; the code stays compact and readable. The program-
mer has to get accustomed to passing the call argument around.
Again, things get uglier if the situation forces the programmer to
explicitly free local references, since then the code gets cluttered
with deallocation statements.

5.4 Portability
This approach is easily portable, as it does not impose any restric-
tions on the virtual machine and the garbage collector. The ap-
proach builds a simple layer of abstraction on top of the underlying
run-time system.

6. Scheme 48
The upcoming release of Scheme 48 contains a JNI-style foreign-
function interface as described in section 5. Out of all the different
approaches I covered here, it is the one that is the easiest to use, the
most portable, and does not pose any restrictions on the run-time
system.

It was easy to implement on top of the Scheme 48 system: The
garbage collector of Scheme 48 provides a straightforward inter-
face to add locations to the root set, which the new foreign-function
interface uses to register local and global references. Additionally,
Scheme 48’s old foreign-function interface already supports rais-
ing exceptions from external code and takes care of cleaning up
the call stack on non-local exits. I was able to re-use the already
existing functionality for the new foreign-function interface.

Thus, Scheme 48 currently supports two foreign-function inter-
faces: The old GCPROTECT-style (see section 3) and the new JNI-
style interface live side by side. This is useful for comparing both
approaches and essential for backwards compatibility—there are
many lines of external code that use the GCPROTECT interface.
Although it is easy to rework existing external code from GCPRO-
TECT to JNI-style—change all function definitions and function
calls so that they only accept reference objects and return only ref-
erence objects, and add a call object to every function—it may take
a while until all external code works with the new foreign-function
interface. Until now, we have already ported the following external
libraries to the new foreign-function interface: POSIX, networking
code, SRFI 27, and the Oracle Call Interface for Scheme 48 (oci48).
Eventually, I will remove the old GCPROTECT-style interface.

In the already ported libraries with over 4,000 lines of code,
there are only two global references left that need to be managed
explicitly, all other Scheme values that the libraries use are local
references and are thus managed automatically by the foreign-
function interface. With the new interface, I was able to remove
over 200 lines of GCPROTECT-related code from the libraries.

7. Related work
Another approach to a foreign-function interface that came up on
the SRFI-50 discussion list [16] is implemented in Lord’s Pika
Scheme [15]. Note that Pika is not usable yet and that it is cur-
rently not under development. Since the ideas are not proved by
demonstration, I just give a quick overview: It is similar to the JNI
approach in that it also only works on reference objects, does not
put any restriction on the garbage collector, and works nicely with
threads. The biggest difference is that reference objects are stack-
allocated on the external side and thus get freed upon exit from the
lexical block that owns them, which makes it more exact than JNI
that needs the call to return. The external code written in Pika style
is more verbose than external code that uses JNI style, though:

1. Functions may only return objects by reference, they may not
provide them as normal return values.

2. Variable declarations need to be enclosed in structs.
3. These structs need to be registered and unregistered with the

garbage collector.

While the first two points are arguably a unusual way to write C
code, the last point describes a mechanism that is related to the
GCPROTECT mechanism, see section 3.

8. Conclusions
Memory management is hard. Memory management across multi-
ple programming languages is even harder. Thus, the most impor-
tant issue that a implementor has to consider in designing a foreign-
function interface to make functionality available across different
programming languages is the management of memory. I reviewed
different approaches to foreign-function interfaces that are used in
implementations of functional programming languages:

Conservative garbage collection (see section 2): Foreign-function
interfaces that are backed by a conservative garbage collec-
tor are becoming rare. While some implementations like PLT
Scheme moved away from a conservative collector, other imple-
mentations have always had exact garbage collectors. Although
such a foreign interface is very easy to use by a programmer
and it is thread-safe, the disadvantages outweigh the simplicity
of writing external code.

GCPROTECT (see section 3): The dissatisfaction with the GCPRO-
TECT mechanism and the difficulty of writing external code
with it was the reason to undertake this survey in the first place.
The GCPROTECT scheme is error-prone since the program-
mer has to manage local and global variables explicitly and it is
difficult to track down errors.

Stable pointers (see section 4): A foreign-function interface that
allows the use of dynamically loaded external libraries without
the need to write a single line of external code is appealing
to programmers. However, the code that the programmer has
to write to access the external functionality and to do object
marshalling has to contain low-level details and brings explicit
memory management into the high-level world. The external
code gets lifted to high-level syntax. Additionally, this approach
is not really portable since it requires nonstandard extension for
the C compiler.

Reference objects (see section 5): The reference-object approach
is easy to use, is fully portable, can be easily made thread-safe,
and does not pose any restrictions on the run-time system. The
programmer only has to manage those objects explicitly that
outlive an external call, the foreign function interface manages
objects that do not outlive the call automatically. In addition,
it is easy to implement and add to an existing implementation

8



of a high-level programming language as it is a simple layer of
abstraction on top of the underlying run-time system.

Even if the described interfaces to external code try to make it as
easy as possible for the programmer, it is never realistic to expect
to be able to completely avoid explicit memory management in C.

Acknowledgments
I thank Mike Sperber and Eric Knauel for proof-reading and their
valuable suggestions, Harald Glab-Plhak for testing Scheme 48’s
new foreign-function interface, and Jim Blandy for bringing a JNI-
style foreign-function interface into the Scheme world. Suggestions
by the anonymous reviewers led to improvements in the final ver-
sion of this paper.

References
[1] J. F. Bartlett. Mostly-Copying garbage collection picks up generations

and C++. Technical Note, DEC Western Research Laboratory, Palo
Alto, CA, 1989.

[2] E. Barzilay and D. Orlovsky. Foreign interface for PLT Scheme. In
Proceedings of the Fifth ACM SIGPLAN Workshop on Scheme and
Functional Programming, pages 63–74, 2004.

[3] J. Blandy. Minor Scheme. 2007. http://www.red-bean.com/
trac/minor/.

[4] J. Blandy. Minor’s main header for the C API. 2007. http:
//www.red-bean.com/trac/minor/browser/trunk/include/
minor/minor.h.

[5] H.-J. Boehm. A garbage collector for C and C++. 2007. http:
//www.hpl.hp.com/personal/Hans Boehm/gc/index.html.

[6] M. Flatt. Inside PLT MzScheme. Part of the PLT Scheme distribution,
2007. http://download.plt-scheme.org/doc/372/html/
insidemz/insidemz.html.

[7] Franz Lisp. Foreign function interface. 2008. http://www.franz.
com/support/documentation/8.1/doc/foreign-functions.
htm.

[8] B. Haible, M. Stoll, and S. Steingold. Implementation Notes
for GNU CLISP. Part of the GNU CLISP distribution, 2008.
http://clisp.cons.org/impnotes.

[9] R. Jones and R. Lins. Garbage Collection Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons Ltd., 1996.

[10] R. Kelsey, J. Rees, and M. Sperber. The Incomplete Scheme 48
Reference Manual for release 1.8. Part of the Scheme 48 distribution,
2008. http://s48.org/1.8/manual/manual.html.

[11] R. Kelsey and M. Sperber. SRFI 50: Mixing Scheme and C. 2003.
http://srfi.schemers.org/srfi-50/srfi-50.html.

[12] O. Laumann. Building Extensible Applications with Elk – C/C++
Programmer’s Manual. 1995. http://www-rn.informatik.
uni-bremen.de/software/elk/doc/cprog.html.

[13] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The
Objective Caml system. 2007. http://caml.inria.fr/pub/
docs/manual-ocaml.

[14] S. Liang. Java Native Interface: Programmer’s Guide and Specifica-
tion. 1999. http://java.sun.com/docs/books/jni/.

[15] T. Lord. Pika Scheme. 2003. http://regexps.srparish.net/
www/#pika.

[16] Members of the SRFI community. SRFI 50 Pre-Withdrawal
Discussion Archive. 2003. http://srfi.schemers.org/
srfi-50/mail-archive/maillist.html.

[17] M. Serrano. Bigloo Scheme. 2008. http://www-sop.inria.fr/
mimosa/fp/Bigloo/bigloo.html.

[18] O. Shivers, B. D. Carlstrom, M. Gasbichler, and M. Sperber.
Scsh Reference Manual. Part of the scsh distribution, 2005.
http://www.scsh.net/docu/html/man.html.

[19] Sun Microsystems. Java Native Interface Specification. 2003.
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/
jniTOC.html.

[20] The Free Software Foundation. GNU Guile. 2008. http:
//www.gnu.org/software/guile.

[21] The GHC Team. The Glorious Glasgow Haskell Compilation System
User’s Guide. Part of the GHC distribution, 2007. http://
haskell.cs.yale.edu/ghc/docs/6.8.2/users guide.pdf.

[22] The GTK+ Team. The GTK+ Project. 2008. http://www.gtk.org.
[23] R. Urban. Design issues for foreign function interfaces. 2004.

http://autocad.xarch.at/lisp/ffis.html.
[24] B. Wing, S. Turnbull, M. Buchholz, H. Niksic, M. Neubauer,

O. Galibert, and A. Piper. XEmacs Internals Manual. Part of the
XEmacs distribution. http://www.xemacs.org.

9


